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The various theoretical considerations for the effects of quenched random fields 
(RF) on second-order transitions as well as the experimental situation are briefly 
reviewed. Some of the physical realizations of the RF models are discussed, with 
an emphasis on solid-state first-order transitions in impure systems. The physical 
arguments for the RF effects in the bulk as well as on phase interfaces are 
discussed. In the latter case it is suggested that scattering experiments can probe 
the details of the interface fluctuations. The role of long relaxation times and 
metastability in Ising RF systems is emphasized. 

KEY WORDS: Random fields; dimensional reduction; disordered sys- 
tems; metastability. 

1. INTRODUCTION AND REVIEW 

Quenched  r andom fields (RF), (j'2~ that couple l inearly to the order parame-  

ter, have a marked  effect on regular second-order  phase transitions. As 
shown by Imry and  Ma  (3) (henceforth abbrevia ted  as IM), the long-range 

order  is destroyed below a lower critical d imens ion  (LCD), d r. d / is four (3~ 
for con t inuous  systems and  two (3~ or three (4-8) in Ising-like ones. For  
d > dr, the critical behavior  is strongly modified from the pure case. A n  
interesting property is the d imens ional  reduction.  (9-14) The d-d imens ional  

R F  model  is argued to behave like the d -  6 d imens ional  pure model. 6 
appears to be equal to 2 for con t inuous  symmetry  systems and  for R F  Ising 

models ( R F I M )  at d = 6. The behavior  of the R F I M  is not  yet clear: Either 
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8 -- 2 always, or 8 = 2 for 4 < d < 6 and changes continuously to 8 = 1 at 
d = 3, or 8 = 2 - ~a-8, where r/a is the usual critical exponent at dimension 
d. (2'13) Recently 8 = 2 -  ~/a-8 was argued to apply also for continuous 
symmetry systems. (13~ Clearly, whatever are the detailed properties of the 
RFIM, they are qualitatively more different from the pure case than most 
other perturbations. The dimensional reduction is of interest in other 
branches of physics as well. (6&12'14) We shall also emphasize in this paper 
the interesting dynamical behavior of the RFIM which includes long 
relaxation times for long-wavelength motion, metastability, and irreversible 
behavior.(15-251 These properties resemble very much those of spin glasses, 
and, in fact, the RFIM may show similar types of spin ordering. (3'26'27) 

While the first realization of an RF model in the literature is, as far as 
we know, the work by Larkin (1~ on the pinning of the vortex lattice in 
type-II superconductors, we can now consider many other examples of RF 
systems. These include magnetic, (3'26) ferroelectric and displacive, (28 3~ 
lattice (32~ (including C-I transitions), electronic (CDW (33'34) states) systems, 
and, notably, solid state first-order transitions, (35~ which deserve, in our 
opinion, much more study. 

The effect of the RF is manifest not only in bulk properties but also in 
the properties of the interface (36'37) between, say, + and - domains in the 
RFIM. It turns out (4~ that the RF induces important interface fluctua- 
tions (4'32'38-4~ and additional roughening. (41) This can be examined by 
scattering equilibriums which we shall also briefly discuss here. We shall 
also emphasize the unusual line shapes in the critical scattering, ex- 
pected (4'6'38) and found (16'18'2~ in RF systems. 

After the qualitative arguments and O(r R G  calculation around d = 6 
(which is the same as d = 4 in the pure model) by IM, (3) Grinstein (9) has 
considered the O(e 2) terms and found that d is replaced by d -  2 in the 
exponents and the hyperscaling relations. Aharony, Imry, and Ma (1~ 
attempted to prove that the 6 -  e expansion for the RFIM is indeed 
identical to the 4 - e  one for the pure model to all orders in e. This 
complete calculation has been first done correctly by Young. (1~ Parisi and 
Sourlas (12~ first introduced the supersymmetric formulation for this prob- 
lem, which enabled them to present the above proof in a much more 
elegant way. This has created some interest in the problem (6'7't4~ by the 
high-energy community. Pytte, Imry, and Mukamel (4~ attempted to obtain 
d t = 3 and to make an e expansion for d =  3 + e for the RF interface 
model (38~ which they introduced, using the replica method, dl = 3 is consis- 
tent with a dimensional reduction 8 = 2. The qualitative aspects of this 
result which do have difficulties (see Section 3) were discussed by Binder, 
Imry, and Pytte. (5~ The d t = 3 result and the 3 + e expansion were then 
obtained more generally and in a more elegant fashion using the super- 
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symmetry method, by Kogon and Wallace. (6) Later, Cardy (7) has derived 
the result for general d, Cardy and Boyanovsky (42) considered the dynam- 
ics, and Niemi (8) has also found the d ~ d - 2  correspondence in the 
supersymmetric picture. However, Grinstein and Ma (39'4~ and Villain (32~ 
have reconsidered the RF interface problem with a physically very plausi- 
ble RG procedure, and found d t -- 2. Their results are also supported by 
numerical transfer-matrix computations by Fernandez et al. (43~ Earlier 
Monte Carlo (44-46) simulations (15) of the same model were inconclusive but 
have served to point out and demonstrate the importance of dynamics. 
Long-lived metastable states exist for this problem and make it quite 
difficult to achieve equilibrium. An interesting idea of constructing an 
annealed model so that its statistical mechanics will be identical to that of 
the RFIM was pursued by Schwartz. (13) The ensuing annealed model is 
quite complicated, having long-range correlations, but Schwartz has 
claimed that by considering the leading singular behavior of the correlation 
functions one can show that the RFIM has the same critical behavior as 
the pure Ising model in d' = d - 2 + T/(d') dimensions, in agreement with a 
qualitative argument in Ref. 10--see Section 3. This does not agree with the 
c expansion, but it may be argued that the perturbative treatments may be 
hampered by generalized Griffiths-type singularities as function of the 
RF.  (45'47) Recent transfer-matrix studies of finite size d =  2 RFIMs by 
Fernandez and Pytte (4a) confirm the exponential dependence of the correla- 
tion length on the inverse square of the RF amplitude, typical to an LCD 
situation. This is another strong indication that d t = 2 in equilibrium. 

The experimental situation, while giving some indications that d t -- 2 in 
equilibrium (see, however, R. J. Birgeneau in this issue), is also not less 
unsettled than the theoretical one, the main problem being the difficulty in 
reaching equilibrium within reasonable measurement times, as found also 
by the Monte Carlo simulations. Most magnetic RF experiments have been 
on the disordered antiferromagnet in a uniform field (3'26'4~ (see Section 
2). The first experiments (5~ already showed a marked RF effect, and the 
Ising transition in three dimensions (3D) was either broadened or consistent 
with a large negative value of the exponent ~. The first neutron scattering 
results (~6,~8~ had clearly shown destruction of long-range order in the RFIM 
in both d = 2 and d--3 ,  which was also seen in further experiments. 
However, it was not completely clear that equilibrium had been reached 
with the field. Experiments on Ising-like systems with appreciable x - y  
interactions, that may be thought as having faster equilibration times, (21'22) 
appear to have some remnant long-range order in 3D with the RF. 
Birefringence experiments, (17'19~ which probe the short-range part of the 
correlations (much like the specific heat measurements), do not show a 
broadening of the Ising transition with the RF. This may, however, demon- 
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strate another type of ordering (26'27) and larger field values may be needed. 
Recent neutron scattering results by Wong and Cable(2 ~ have probed the 
nonequilibrium behavior and also suggested, though with a lower resolution, 
that long-range order is retained in 3D. 

Clearly, it is impossible at this stage to give a completely definitive 
evaluation of the LCD problem. In this paper we shall review several of the 
many realizations of the RF model in Section 2 and discuss the various 
physical arguments, which are rather instructive, in Section 3. Concluding 
remarks are made in Section 4, with emphasis on the importance of the 
time-dependent properties. In fact, it is entirely possible that the true 
equilibrium behavior (as obtained theoretically by calculating the total 
partition function) may be different from what happens in very long-lived 
"glassy" metastable states. 

2. SOME EXAMPLES FOR RANDOM-FIELD SYSTEMS 

1.2. Pinning of the Vortex Lattice; Adsorbed Layers 

An obvious realization of an RF coupled to the order parameter is the 
tendency of defects or impurities to distort or randomly "pin" the periodic 
arrangement of a crystal. This may happen when a 2D crystal is coupled to 
the 3D world. The first example of a random-field problem has indeed been 
the work of Larkin (1) on the destruction of the vortex lattice in type-II 
superconductors by random pinning. An adsorbed monolayer also experi- 
ences a potential energy due to the substrate. In the ideal case, this may be 
thought of as an "external" periodic (commensurate or incommensurate) 
potential. However, when the substrate is not perfect (due to defects, 
corrugations, crystallites, etc.), this potential which couples linearly to the 
adsorbate order parameter becomes random. (32) This effect should be 
important in many adsorbate phase transition problems. 

2.2. Effect of Regular Impurities on First-Order Transitions 

Consider the first-order transition as a function of a uniform magnetic 
field, H, at H = 0 for a ferromagnet below Tr If an RF is now switched on 
and if the system is, say, below the LCD, there will be no ferromagnetic 
phase and the first-order transition as a function of H will be smeared. 
Above the LCD, the first-order transition will be between the "up" and 
"down" ferromagnetic random-field phases. This problem is isomorphous 
to a first-order transition driven by any other intensive variable (e.g., 
temperature, T) in the presence of impurities which locally influence the 
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first-order transition temperature (or the transition value of the appropriate 
variable). One thus reaches the conclusion that the effect of regular "To" 
impurities on first-order transitions is analogous to that of a random field 
on the ferromagnet. In fac t, one may consider the energetics of domains of 
the wrong phase, which is in a one-to-one correspondence with the similar 
consideration in the random field case. This has been treated in some detail 
by Imry and Wortis. (35) Since there exist many solid-state first-order 
transitions, we think that this should be an ubiquitous realization of the 
random field model. The need to be in the solid state arises in order to have 
the random variable quenched. 

2.3. Impurity Effects on Displacive and CDW Transitions 

Another example of random fields is provided by impurities whose 
symmetry allows them to couple linearly (3~) to a displacive, ferroelec- 
tric,(28 3o) or CDW-type (33'34) order parameter. Such off-center impurities 
have been considered by Halperin and Varma (31~ as a model for the central 
peak often observed in scattering from such systems. If the motion of these 
impurities can be considered as quenched on the time scales of interest, the 
central peak associated with them will be almost "elastic." In  this case they 
will generate quenched random fields of the type discussed here. 

2.4. Disordered Magnets 

Recently, popular examples of random-field systems have been various 
impure magnetic systems. Imagine a ferromagnetic system, with impurities 
that are antiferromagnetiCally coupled to the host atoms. If the impurity 
spins are classical, it has been suggested by IM that one may redefine them 
by a factor of - 1  to make their interactions with the host ferromagnetic 
(this is a simple gauge transformation). The application of a uniform 
magnetic field on this system will result in a negative field on the (rede- 
fined) impurities, so that the applied field will have a random component. 
In the special case where half the host atoms are replaced by impurities-- 
and assuming for simplicity the interimpurity interaction to be ferromag- 
netic--a pure random field is obtained. 

In a very similar fashion, one obtains in simple spin-glass models that 
can be mapped to  ferromagnetic ones by gauge transformations that a 
uniform physical field is transformed to a random one. An example for this 
is the Mattis model. (5~) This should also apply to more realistic spin glass 
models, at least when the ordered state is well defined. The uniform field 
may have an effect similar to an RF on the spin-glass order parameter also 
in real spin glasses. 



854 lmry 

Finally, we note that a classical antiferromagnet in a uniform field 
may be "gauge" transformed to a ferromagnet in a staggered field. If, for 
example, the site dilution is introduced, ~49) the staggered field will be 
disordered and will act in many respects as a random field (for example, 
the excess of + fields over - fields in a volume V will be on the order of 
V1/2). In the case of bond dilution, ~26) the effective random field will be 
proportional to the average antiferromagnetic moment, through the ex- 
change interaction. One should note, however, that in these examples the 
random field appears together with a staggered one as well as with a 
random exchange. The former is probably less important and the latter is 
usually argued to be almost irrelevant. However, the correlation between 
the dilution and the random field is something that has not been addressed 
so far. For strong dilution, one may also be worried about geometrical and 
cluster-related effects, especially near the percolation threshold, f52) The 
exact correspondence of the dilute antiferromagnet in a field to the RFIM 
should be closely checked. 

3. PHYSICAL ARGUMENTS 

3.1. Bulk Considerations 

To establish the instability of the ordered state to an RF, one may 
consider various mechanisms. It should be kept in mind, however, that 
demonstrating a particular instability provides only a sufficient condition 
for the inexistence of the ordered state. There may always exist stronger 
instabilities that could be operative. 

IM considered the energetics of creating a "wrong" domain in the 
ordered phase. This is determined by the balance between the possible 
energy gain due to the RF (53) and the price in energy of the created domain 
wall. This argument showed that the ordered state is unstable to an 
arbitrarily small RF below d = 2 for Ising (and probably more general 
discrete symmetry systems) and below d < 4 for continuous symmetry (i.e., 
Heisenberg and x-y) systems. Similar results are obtained using a different 
language by considering how the RF amplitude h, as well as the exchange 
interaction, J, behave with length scale L, in a scaling RG approach. ~54) 

J (L )~J L  d-I (3.1) 

h(L)--hL (3.2) 
where the first equation is the usual scaling of J for the Ising model 
(related, in fact, to the surface tension(36)), d -  1 is replaced, of course, by 
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d -  2 in continuous symmetry systems. The second equation (32) expresses 
the random addition of fields in a volume L d (as in the IM arguments). 
Aharony and Pytte (54) obtained it by noting that below the LCD one has 
something like a first-order transition at h = 0. (3.1) and (3.2) yield for the 
relevant dimensionless parameter, which is h / J  for (1.1): 

h__j (Z) = h t(2-d)/2 (3.3) 

for the Ising-like case. 2 - d is replaced by 4 - d for continuous symmetry 
systems. Thus h / J  will increase with L for d < 2 (d < 4 in continuous 
symmetry systems) and will break up the ordering for L ~> L c, where 

~(j/h)2/(2-d) Ising-like systems 
Lc (3.4) 

(j/h)2/(4- a) continuous symmetry systems 

in agreement with IM. More detailed considerations yield an exponential 
dependence of L C on ( J / k )  2 at the LCD. Lc is the size of the domains to 
which the system will split (3) due to the RF.  These results appear to be 
correct for the continuous symmetry case, but have been challenged for the 
Ising case. (4-8) One would like to have a real calculation leading to (3.1), 
(3.2). Aharony and Pytte (54~ also discussed the scaling relations ensuing 
from (3.3) for the thermodynamic functions and the structure factor. 

An important concept for the RF problem is the reduction in the 
dimensionality. In order to understand this qualitatively, (1~ recall the 
Pippard argument (55) leading to the usual "hyperscaling" law ud = 2 - a in 
critical phenomena. The correlation volume ~d is the typical unit that can 
turn into the wrong phase by thermal fluctuations. Since the free energy 
density price for that goes like t z-~ It =-- ( T -  T~)/TJ,  one finds 

Ct2-~-~d~kT,  2 - a = pd (3.5) 

where C is a noncritical constant. In the RF problem the principal 
disordering agent is not the temperature but the random field fluctuations. 
The typical value of the random-field fluctuation in a volume (a  is 
~ a / 2 ~ t - ~ d / 2 ;  coupled with a magnetization t ~, this replaces (3.5) by 

Ct2-~-~a~t-~a/2+~ or (2 - a) = ~ , (d -  2 + 7) (3.6) 

where we used the usual d-independent scaling law 

2/3 = (2 - a) - (2 - 77)1, (3.7) 

Thus, d is replaced by d -  2 + ~/ in the d-dependent scaling laws! This 
picture also suggests that the critical behavior of the RF model in d 
dimensions is the same as that of the pure one at d - 2 + ~7 dimensions. We 
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have made this argument only for the (more interesting) Ising-like case. In 
the continuous symmetry system, Bloch walls will make the spin turn 
continuously across the domain and may complicate this simple argument. 

The value of rr I which appears in (3.6) is that appropriate to the actual 
dimension d '  ~ d - 2 + ~ (d'). If we ask what dimension correspofids to the 
LCD of the pure Ising model, d l = 1, at which ~ (d') = 1, we find d = d' + 
2 -  1 = 2. This agrees with the previous arguments (3'32'38'39~ that yielded 
d l = 2 for the RFIM. Equation (3.6) also agrees with the equivalence of the 
d = 6 - e  RFIM with the d = 4 - e  pure Ising model, to O(e) only. At 
order e 2, ~/ comes in and makes (3.6) disagree with the dimensionality 
reduction by 2, which has been proven to all orders in e by perturbation 
theory. This point will be discussed later. 

In the theoretical calculations, the propagators of the RFIM are the 
squares of those of the pure Ising model; this suggests that the usual 
critical-scattering Lorentzian correlation functions around the Bragg peaks 
of the ordered phase should be replaced by their squares, which indeed 
appears to happen in the experiments. (~6'18'2~ The physical mechanism 
for this, similar to the transverse susceptibility effects calculated for the 
continuous symmetry case by IM, is simply that the response, M k, to the 
RF Fourier component h k is xkh k, X~ being the appropriate k-dependent 
susceptibility, Xk = X(1 + k2~2) - 1; thus, neglecting critical effects, 

<lMk[2> - xZh 2 
(1 + k2~2) 2 (3.8) 

for k much smaller than the inverse lattice constant. This is the characteris- 
tic "L0rentzian squared" line shape. Note also that the crossover to the 
RF-dominated behavior (3) is fast and is determined by the pure susceptibil- 
ity exponent 2/. (58) 

Finally we call attention to the recent numerical studies of the 2D 
RFIM by Fernandez and Pytte. (48) The exact transfer matrix product was 
evaluated for finite size RF systems. From this one may obtain the free 
energy and the susceptibility as well as the correlation function. At very low 
temperatures (consistent with the expected crossover analysis) (54) one ob- 
tains a correlation length that goes like exp[(J/h)2]. This is consistent with 
the theories according to which d~ = 2. The scaling behavior as function of 
h and T is also checked and found to be in agreement with Ref. 54. 

3.2. Interface Considerations 

Since the main physical difference between the effects of RF on the 
Ising and the continuous symmetry models lies in the sharp domain 
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Fig. 1. 
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Snapshots of the SOS model for the Ising interface as seen by a Monte Carlo 
Simulation with and without an RF (see text for details.) 

interface vs. the smeared Bloch wall, it might be thought that interesting 
effects may follow from the roughening (41'4'5) of the Ising interface. The 
rough interface thus might yield results intermediate between those of the 
sharp interface and the completely smeared Bloch wall. This, in fact ,  
becomes more interesting since the RF yields an additional roughening of 
the Ising interface. While the details of this RF-induced roughening are still 
at this point under some debate, it clearly exists and has relevant conse- 
quences. To illustrate the effect, we show in Fig. 1 the results of a Monte 
Carlo simulation of a solid-on-solid (SOS) model for the Ising interface. In 
this model for the 1D interface in a 2D system, fluctuations of the flat 
interface are described by the column heights f ,  where i = 0 . . . .  , N a n d f  
are integers; with the Hamiltonian 

U f 
; ~  = 2 J ~  If~-f~+,l + 2h~-] ~ %.sgn(f)  (3.9) 

i=0  i j = O  
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where the second term represents the random field he~j on the 0j)th site of 
the underlying Ising model. E~ are independent random variables, each 
distributed uniformly between - 1 / 2  and 1/2. The boundary conditions 
fo = fN = 0 are taken. Figure 1 clearly demonstrates for J~ T = 0.6, N = 66, 
the very large interface fluctuations induced by h i T  = 0.5. Figure 1 is 
taken from unpublished work by Imry and Kirkpatrick. (15) 

A simple qualitative argument which is equivalent to the approximate 
RG calculation of Grinstein and Ma (39) and Villain (32) is as follows. 
Regarding, for simplicity, f as a continuous function f (x)  we develop it in 
Fourier series 

f (x )  = ~, fksinkx (3.10) 
k 

where the allowed k's are determined by the boundary conditions, i.e., 
kL/~r --- integer, L = N. Let us look at the fluctuation fk for one of the 
smallest possible k's. The details of what happens depend somewhat on the 
precise assumptions on the model. For the continuum case, assuming the 
interface fluctuation to cost an energy of~(Vf) 2 = (oLk2/2)f 2, for the given 
k, where the surface tension, a, is proportional to J,  the number of spins 
involved in this fluctuation is on the order offkL so that the possible energy 
gain is on the order of h(fkL) 1/2. Minimizing the sum of these two energies 
with respect to fk yields 

( f2)  ~ (  h / o)4/3L 2/3k - 8/3 (3.11) 

The total fluctuation ( f 2 )  (say, at the middle, x = N/2) is dominated for 
low d by k = ~r/N (so that one should not worry too much about the 
possible lack of independence of the various k's, etc.), so that 

( f2)  ~ ( h / o)4/3L2 (3,12) 

For any finite h this field-induced roughening is much larger, for L--~ oc, 
than the usual thermal roughening which yields ( f 2 )o c  L, for h = 0 at 
d - -  2. The coefficient of L 2 depends on the details of the model (whether 
continuum or discrete, IVfl or [Vfl 2 interactions), but the power of L, 
which turns out in general d to be 2(5 - d)/3, stays unchanged. In Fig. 1 
one can notice the importance of the few small k components. 

The LCD is obtained in this picture as the d below which ( f 2 )  >> L 2 as 
L-+  oe. This clearly means that finite domains with f ~ L  will spontane- 
ously form below the LCD, which is d t = 2 in this model. Taking the model 
yielding (f2)~(h/J)4/3L2(5-d)/3, w e  find for the domain size 

I c-(J/h)2/O- (3.13) 
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which happens to be the same as the bulk result (3.4). Different interface 
models may yield different factors multiplying 1 / ( 2 -  d) in the expo- 
nent. (4~ For d = 2 more careful treatments yield L c which is exponential 
in (J /h)  2. 

The additional strong roughening of the domain wall in the presence 
of the RF is an effect interesting in its own right. According to the 
discussion in Section 2 this should occur in any situation of a two-phase 
equilibrium in the solid state, in the presence of impurities. This should be 
observable by x-rays, neutron, or light scattering from this interface. 
Consider, for example, light scattering from such an interface with a 
difference 2~n in the refractive indices of the two phases, and with a 
momentum transfer, K, parallel to the interface. A straightforward calcula- 
tion yields for the scattering intensity: 

2 2 S(K)  c~ (An) ( f~)  (3.14) 

which can be used to determine the dependence of (f,~) on K, h, and L. 
This is of interest both above and below the LCD. 

The additional RF interface roughening (below d = 5, in theory) was 
first discussed by Pytte, Imry, and Mukamel, (4~ who found, from a replica- 
trick calculation 

( f 2 ~ (  h / j )2k-4 (3 .15)  

This yields at d = 2 an exponent of 3 in (3.12), and 5 - d in general 
d < 5, in disagreement with the qualitative consideration given above. This 
necessitates using L (a- 1)/2f instead of L (d- 1)/~1/2 in the expression for the 
energy gain due to the field, (4'5'6~ which may not be correct. (56~ It would 
follow were one using force instead of energy consideration, which may 
apply as long as f is less than the interface width. More definitive work on 
this is needed. 

Computer calculations (43~ on the interface at d = 2, using a transfer 
matrix method, support (3.12) (or variations thereof (4~ due to the details of 
the model which preserve the powers of L) and not (3.15). Previous Monte 
Carlo calculations (15~ on the same problem could not distinguish sharply 
enough between the two possibilities. The latter calculations pointed out, 
however, that extremely interesting dynamics exist for this problem, per- 
haps in analogy to the spin-glass case. In fact, the relaxation or equilibrium 
times of the small k interface modes increases sharply with k ~ or with 
L. (15'57) This is easy to understand in terms of free-energy barriers among 
metastable states. This possible existence of metastable states in the RFIM 
is an important aspect that has also to be taken into account in the 
experiments. 
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4. CONCLUSIONS AND REMARKS 

We hope to have shown in this paper some of the many physical 
realizations of the RF model as well as the interesting questions it poses. At 
this stage we have formal theories relying either on perturbation expansions 
or on analyticity and replica symmetry, in strong disagreement with appeal- 
ing physical arguments, approximate calculations, and finite size numerical 
results. Hopefully, this question (as well as the possible effects of dilution) 
will be resolved soon, both experimentally and theoretically. However, the 
question of what is the LCD, and what is the behavior of the RFIM at the 
physical dimension d--  3, is not  the only interesting one. One should really 
focus also on the very interesting slow relaxation and metastability effects 
that show up in these systems, and which greatly complicate the experimen- 
tal studies. Different behavior in equilibrium and in metastable states is 
possible. We also emphasize the possibility of directly studying the RF 
interface fluctuations (perhaps including their dynamics) by scattering 
experiments. Finally, we mention the very interesting case of an RF 
interface where the RF is annealed in one of the phases and it is quenched 
in the other. An example of this is the impure crystal-fluid interface, which 
shows extremely interesting separation and segregation effects. 
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